Ferlay J, Steliarova-foucher E, Lortet-tieulent J, Rosso S. Cancer incidence and mortality patterns in Europe : estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.
Article
CAS
PubMed
Google Scholar
Thomas DB, Moe RE, White E. Breast Conservation Therapy in the United States following the 1990 National Institutes of Health consensus development conference on the treatment of patients with early stage invasive. Published online 1999:628–637.
Kwak JY, Kim EK, Chung SY, et al. Unilateral breast edema: Spectrum of etiologies and imaging appearances. Yonsei Med J. 2005;46(1):1–7.
Article
PubMed
PubMed Central
Google Scholar
Harsolia A, Kestin L, Grills I, et al. Intensity-modulated radiotherapy results in significant decrease in clinical toxicities compared with conventional wedge-based breast radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(5):1375–80.
Article
PubMed
Google Scholar
Adriaenssens N, Verbelen H, Lievens P, Lamote J. Lymphedema of the operated and irradiated breast in breast cancer patients following breast conserving surgery and radiotherapy. Lymphology. 2012;45(4):154–64.
CAS
PubMed
Google Scholar
Adriaenssens N, Belsack D, Buyl R, et al. Ultrasound elastography as an objective diagnostic measurement tool for lymphoedema of the treated breast in breast cancer patients following breast conserving surgery and radiotherapy. Radiol Oncol. 2012;46(4):284–95.
Article
PubMed
PubMed Central
Google Scholar
Toledano A, Garaud P, Serin D, et al. Concurrent administration of adjuvant chemotherapy and radiotherapy after breast-conserving surgery enhances late toxicities: long-term results of the ARCOSEIN multicenter randomized study. Int J Radiat Oncol Biol Phys. 2006;65(2):324–32.
Article
CAS
PubMed
Google Scholar
Clarke D, Martinez A, Cox RS, Goffinet DR. Breast edema following staging axillary node dissection in patients with breast carcinoma treated by radical radiotherapy. Cancer. 1982;49(11):2295–9.
Article
CAS
PubMed
Google Scholar
Delay E, Gosset J, Toussoun G, Delaporte T, Delbaere M. Post-treatment sequelae after breast cancer conservative surgery. Ann Chir Plast Esthet. 2008;53(2):135–52.
Article
CAS
PubMed
Google Scholar
Pezner RD, Patterson MP, Hill LR, Desai KR, Vora N, Lipsett JA. Breast edema in patients treated conservatively for stage I and II breast cancer. Int J Radiat Oncol Biol Phys. 1985;11(10):1765–8.
Article
CAS
PubMed
Google Scholar
Wratten CR, O’brien PC, Hamilton CS, Bill D, Kilmurray J, Denham JW. Breast edema in patients undergoing breast-conserving treatment for breast cancer: assessment via high frequency ultrasound. Breast J. 2007;13(3):266–73.
Article
PubMed
Google Scholar
Poglio S, Galvani S, Bour S, André M, Prunet-Marcassus B, Pénicaud L, et al. Adipose tissue sensitivity to radiation exposure. Am J Pathol. 2009;174(1):44–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Constantine C, Parhar P, Lymberis S, et al. Feasibility of accelerated whole-breast radiation in the treatment of patients with ductal carcinoma in situ of the breast. Clin Breast Cancer. 2008;8(3):269–74.
Article
PubMed
Google Scholar
Wenz F, Welzel G, Keller A, et al. Early initiation of external beam radiotherapy (EBRT) may increase the risk of long-term toxicity in patients undergoing intraoperative radiotherapy (IORT) as a boost for breast cancer. Breast. 2008;17(6):617–22.
Article
PubMed
Google Scholar
Vicini FA, Chen P, Wallace M, et al. Interim cosmetic results and toxicity using 3D conformal external beam radiotherapy to deliver accelerated partial breast irradiation in patients with early-stage breast cancer treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys. 2007;69(4):1124–30.
Article
PubMed
Google Scholar
Mussari S, Sabino Della Sala W, Busana L, et al. Full-dose intraoperative radiotherapy with electrons in breast cancer. First report on late toxicity and cosmetic results from a single-institution experience. Strahlenther Onkol. 2006;182(10):589–95.
Article
PubMed
Google Scholar
Marcenaro M, Sacco S, Pentimalli S, et al. Measures of late effects in conservative treatment of breast cancer with standard or hypofractionated radiotherapy. Tumori. 2004;90(6):586–91.
Article
PubMed
Google Scholar
Back M, Guerrieri M, Wratten C, Steigler A. Impact of radiation therapy on acute toxicity in breast conservation therapy for early breast Cancer. Clin Oncol. 2004;16(1):12–6.
Article
CAS
Google Scholar
Hoeller U, Tribius S, Kuhlmey A, Grader K, Fehlauer F, Alberti W. Increasing the rate of late toxicity by changing the score? A comparison of RTOG/EORTC and LENT/SOMA scores. Int J Radiat Oncol Biol Phys. 2003;55(4):1013–8.
Article
PubMed
Google Scholar
Grann A, McCormick B, Chabner ES, et al. Prone breast radiotherapy in early-stage breast cancer: a preliminary analysis. Int J Radiat Oncol. 2000;47(2):319–25.
Article
CAS
Google Scholar
Kuptsova N, Chang-Claude J, Kropp S, et al. Genetic predictors of long-term toxicities after radiation therapy for breast cancer. Int J Cancer. 2008;122(6):1333–9.
Article
CAS
PubMed
Google Scholar
Goyal S, Daroui P, Khan AJ, Kearney T, Kirstein L, Haffty BG. Three-year outcomes of a once daily fractionation scheme for accelerated partial breast irradiation (APBI) using 3-D conformal radiotherapy (3D-CRT). Cancer Med. 2013;2(6):964–71.
Article
PubMed
PubMed Central
Google Scholar
Olivotto IA, Weir LM, Kim-Sing C, et al. Late cosmetic results of short fractionation for breast conservation. Radiother Oncol. 1996;41(1):7–13.
Article
CAS
PubMed
Google Scholar
Dragun AE, Quillo AR, Riley EC, et al. A phase 2 trial of once-weekly Hypofractionated breast irradiation: first report of acute toxicity, feasibility, and patient satisfaction. Int J Radiat Oncol. 2013;85(3):123–e128.
Article
Google Scholar
Chadha M, Vongtama D, Friedmann P, et al. Comparative acute toxicity from whole breast irradiation using 3-week accelerated schedule with concomitant boost and the 6.5-week conventional schedule with sequential boost for early-stage breast Cancer. Clin Breast Cancer. 2012;12(1):57–62.
Article
PubMed
Google Scholar
Kelemen G, Varga Z, Lázár G, Thurzó L, Kahán Z. Cosmetic outcome 1-5 years after breast conservative surgery, irradiation and systemic therapy. Pathol Oncol Res. 2012;18(2):421–7.
Article
PubMed
Google Scholar
Li F, He Z, Xue M, Chen L, Wu S, Guan X, Li F, He Z, Xue M, Chen L, Wu S, Guan X. Feasibility and acute toxicity of 3-dimensional conformal external-beam accelerated partial-breast irradiation for early-stage breast cancer after breast-conserving surgery in Chinese female patients. Chin Med J Chin Med J (Engl). 2011;124(9):1305–9.
Google Scholar
Barnett GC, Wilkinson JS, Moody AM, et al. The Cambridge breast intensity-modulated radiotherapy trial: patient- and treatment-related factors that influence late toxicity. Clin Oncol. 2011;23(10):662–73.
Article
CAS
Google Scholar
Berrang TS, Olivotto I, Kim D-H, et al. Three-year outcomes of a Canadian multicenter study of accelerated partial breast irradiation using conformal radiation therapy. Int J Radiat Oncol Biol Phys. 2011;81(5):1220–7.
Article
PubMed
Google Scholar
Kuzmiak CM, Zeng D, Cole E, Pisano ED. Mammographic findings of partial breast irradiation. Acad Radiol. 2009;16(7):819–25.
Article
PubMed
Google Scholar
Forrai G, Polgar C, Zana K, et al. The role of STIR MRI sequence in the evaluation of the breast following conservative surgery and radiotherapy. Neoplasma. 2001;48(1):7–11.
CAS
PubMed
Google Scholar
Johansson K, Jönsson C, Björk-Eriksson T. Compression treatment of breast edema: a randomized controlled pilot study. Lymphat Res Biol. 2020;18(2):129–35.
Article
PubMed
Google Scholar
Formenti SC, Hsu H, Fenton-Kerimian M, et al. Prone accelerated partial breast irradiation after breast-conserving surgery: five-year results of 100 patients. Int J Radiat Oncol. 2012;84(3):606–11.
Article
Google Scholar
Verbelen H, Vrieze T De, Soom T Van, Meirte J, Goethem M Van, Hufkens G. Development and clinimetric properties of the Dutch Breast Edema Questionnaire ( BrEQ ‑ Dutch version ) to diagnose the presence of breast edema in breast cancer patients. Qual Life Res. 2020;29(2):569-78.
Verbelen H, Gebruers N, Beyers T, De Monie A-C, Tjalma W. Breast edema in breast cancer patients following breast-conserving surgery and radiotherapy: a systematic review. Breast Cancer Res Treat. 2014;147(3):463-71.
Wratten C, Kilmurray J, Wright S, Back M, Hamilton CS, Denham JW. Pilot study of high-frequency ultrasound to assess cutaneous Oedema in the conservatively managed breast. Radiat Oncol Invest. 2000;301:295–301.
Google Scholar
Johansson K, Darkeh MH, Lahtinen T, Björk-Eriksson T, Alexsson R. Two-year follow-up of temporal changes of breast edema after breast cancer treatment with surgery and radiation evaluated by tissue dielectric constant (TDC). Eur J of Lymphol. 2015;27(73):15–21.
Google Scholar
Young-Afat DA, Gregorowitsch ML, van den Bongard DH, et al. Breast edema following breast-conserving surgery and radiotherapy: patient-reported prevalence, determinants, and effect on health-related quality of life. JNCI Cancer Spectr. 2019;3(2):4–11.
Article
Google Scholar
Lam E, Yee C, Wong G, et al. A systematic review and meta-analysis of clinician-reported versus patient-reported outcomes of radiation dermatitis. Breast. 2020;50:125–34.
Article
PubMed
Google Scholar
Verbelen H. Arm, shoulder and breast morbidity after breast cancer treatment, PhD dissertation, University of Antwerp; 2020.
Google Scholar
Society TI, Document C, Congress XVII, et al. The diagnosis and treatment of peripheral lymphedema: 2016 consensus document of the international society of lymphology. Lymphology. 2016;49(4):170–84.
Google Scholar
Gebruers N, Verbelen H, De Vrieze T, et al. Current and future perspectives on the evaluation, prevention and conservative management of breast cancer related lymphoedema: a best practice guideline. Eur J Obstet Gynecol Reprod Biol. 2017;216.
Thompson B, Gaitatzis K, Janse de Jonge X, Blackwell R, Koelmeyer LA. Manual lymphatic drainage treatment for lymphedema: a systematic review of the literature. J Cancer Surviv. 2020. https://doi.org/10.1007/s11764-020-00928-1. [Epub ahead of print].
Stuiver MM, ten Tusscher MR, Agasi-Idenburg CS, Lucas C, Aaronson NK, Bossuyt PMM. Conservative interventions for preventing clinically detectable upper-limb lymphoedema in patients who are at risk of developing lymphoedema after breast cancer therapy. Cochrane Database Syst Rev. 2015;2.
Ezzo J, Manheimer E, Mcneely ML, Howell DM, Weiss R, Johansson KI, et al. Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane Database Syst Rev. 2015;5.
Huang TW, Tseng SH, Lin CC, Bai CH, Chen CS, Hung CS, et al. Effects of manual lymphatic drainage on breast cancer-related lymphedema: A systematic review and meta-analysis of randomized controlled trials. World J Surg Oncol [journal on the internet]. 2013;11:15. https://doi.org/10.1186/1477-7819-11-15.
Tambour M, Holt M, Speyer A, Christensen R, Gram B. Manual lymphatic drainage adds no further volume reduction to complete decongestive therapy on breast cancer-related lymphoedema: a multicentre, randomised, single-blind trial. Br J Cancer. 2018;119(10):1215–22.
Article
PubMed
PubMed Central
Google Scholar
Gradalski T, Ochalek K, Kurpiewska J. Complex decongestive lymphatic therapy with or without Vodder II manual lymph drainage in more severe chronic Postmastectomy upper limb lymphedema: a randomized noninferiority prospective study. J Pain Symptom Manag. 2015;50(6):750–7.
Article
Google Scholar
Andersen L, Hojris I, Erlandsen M, Andersen J. Treatment of breast-cancer-related lymphedema with or without manual lymphatic drainage: a randomized study. Acta Oncol. 2000;39(3):399–405.
Article
CAS
PubMed
Google Scholar
Executive Committee of the International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2020 Consensus Document of the International Society of Lymphology. Lymphology. 2020;53(1):3-19.
Kilbreath SL, Ward LC, Davis GM, et al. Reduction of breast lymphoedema secondary to breast cancer: a randomised controlled exercise trial. Breast Cancer Res Treat. 2020;184(2):459-67.
Bloomquist K, Oturai P, Steele ML, et al. Heavy-load lifting: acute response in breast cancer survivors at risk for lymphedema. Med Sci Sports Exerc. 2018;50(2):187–95.
Article
PubMed
Google Scholar
Mayrovitz HN, Weingrad HN, Brlit F, Lopez LB, Desfor R. Tissue dielectric constant (TDC) as an index of localized arm skin water: differences between measuring probes and genders. Lymphology. 2015;48(1):15–23.
CAS
PubMed
Google Scholar
Koehler LA, Mayrovitz HN. Tissue dielectric constant measures in women with and without clinical trunk lymphedema following breast Cancer surgery: a 78-week longitudinal study. Phys Ther. 2020;100(8):1384–92.
Article
PubMed
PubMed Central
Google Scholar
Hegedus F, Mathew LM, Schwartz RA. Radiation dermatitis: an overview. Int J Dermatol. 2017;56(9):909–14.
Article
PubMed
Google Scholar