Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–54.
Article
Google Scholar
Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17(1):18–29.
Article
Google Scholar
Chen CM, Tsai CC, Chung CY, Chen CL, Wu KP, Chen HC. Potential predictors for health-related quality of life in stroke patients undergoing inpatient rehabilitation. Health Qual Life Outcomes. 2015;13:118.
Article
Google Scholar
Morris JH, van Wijck F, Joice S, Donaghy M. Predicting health related quality of life 6 months after stroke: the role of anxiety and upper limb dysfunction. Disabil Rehabil. 2013;35(4):291–9.
Article
Google Scholar
Poltawski L, Allison R, Briscoe S, Freeman J, Kilbride C, Neal D, et al. Assessing the impact of upper limb disability following stroke: a qualitative enquiry using internet-based personal accounts of stroke survivors. Disabil Rehabil. 2016;38(10):945–51.
Article
Google Scholar
Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, et al. Standardized Measurement of Sensorimotor Recovery in Stroke Trials: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabil Neural Repair. 2017;31(9):784–92.
Article
Google Scholar
Pollock A, St George B, Fenton M, Firkins L. Top 10 research priorities relating to life after stroke–consensus from stroke survivors, caregivers, and health professionals. Int J Stroke : Official J Int Stroke Soc. 2014;9(3):313–20.
Article
Google Scholar
Bernhardt J, Hayward KS, Dancause N, Lannin NA, Ward NS, Nudo RJ, et al. A stroke recovery trial development framework: Consensus-based core recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2019;14(8):792–802.
Article
Google Scholar
Darling WG, Pizzimenti MA, Morecraft RJ. Functional recovery following motor cortex lesions in non-human primates: experimental implications for human stroke patients. J Integr Neurosci. 2011;10(03):353–84.
Article
Google Scholar
Kwakkel G. Impact of intensity of practice after stroke: issues for consideration. Disabil Rehabil. 2006;28(13–14):823–30.
Article
Google Scholar
Krakauer JW; C. Broken Movement. MIT Press; 2017.
McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–90.
Article
Google Scholar
Daly JJ, McCabe JP, Holcomb J, Monkiewicz M, Gansen J, Pundik S. Long-Dose Intensive Therapy Is Necessary for Strong, Clinically Significant, Upper Limb Functional Gains and Retained Gains in Severe/Moderate Chronic Stroke. Neurorehabil Neural Repair. 2019;33(7):523–37.
Article
Google Scholar
French B, Thomas LH, Coupe J, McMahon NE, Connell L, Harrison J, et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2016;11:CD006073.
PubMed
Google Scholar
Hayward KS, Brauer SG. Dose of arm activity training during acute and subacute rehabilitation post stroke: a systematic review of the literature. Clin Rehabil. 2015;29(12):1234–43.
Article
Google Scholar
Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci [Internet]. 2013. [cited 2020 Mar 11];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870954/
Hayward KS, Churilov L, Dalton EJ, Brodtmann A, Campbell BCV, Copland D, et al. Advancing Stroke Recovery Through Improved Articulation of Nonpharmacological Intervention Dose. Stroke. 2021;52(2):761–9.
Article
Google Scholar
Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.
Article
Google Scholar
Stockley R, Peel R, Jarvis K, Connell L. Current therapy for the upper limb after stroke: a cross-sectional survey of UK therapists. BMJ Open [Internet]. 2019. [cited 2020 Mar 11];9(9). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797388/
Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HFM. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013;37(4):166–75.
Article
Google Scholar
Morris J, Jones M, Thompson N, Wallace T, DeRuyter F. Clinician perspectives on mrehab interventions and technologies for people with disabilities in the united states: a national survey. IJERPH. 2019;16(21):4220.
Article
Google Scholar
Thomson K, Pollock A, Bugge C, Brady MC. Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice. Disabil Rehabil Assist Technol. 2015;30:1–8.
Article
Google Scholar
Schmid L, Glässel A, Schuster-Amft C. Therapists’ perspective on virtual reality training in patients after stroke: a qualitative study reporting focus group results from three hospitals. Stroke Research and Treatment. 2016;2016:1–12.
Article
Google Scholar
Glegg SMN, Levac DE. Barriers, facilitators and interventions to support virtual reality implementation in rehabilitation: a scoping review. PM&R. 2018;10(11):1237-1251.e1.
Article
Google Scholar
Krakauer JW, Kitago T, Goldsmith J, Ahmad O, Roy P, Stein J, et al. Comparing a novel neuroanimation experience to conventional therapy for high-dose intensive upper-limb training in subacute stroke: the smarts2 randomized trial. Neurorehabil Neural Repair. 2021;35(5):393–405.
Article
Google Scholar
Green J, Thorogood N. Qualitative methods for health research. 2014.
Google Scholar
Michie S, Yardley L, West R, Patrick K, Greaves F. Developing and Evaluating Digital Interventions to Promote Behavior Change in Health and Health Care: Recommendations Resulting From an International Workshop. J Med Internet Res [Internet]. 2017. [cited 2019 May 27];19(6). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509948/
Michie S, Atkins L, West R. The behaviour change wheel: a guide to designing interventions. London: Silverback Publishing; 2014.
Google Scholar
Atkins L, Francis J, Islam R, O’Connor D, Patey A, Ivers N, et al. A guide to using the Theoretical Domains Framework of behaviour change to investigate implementation problems. Implement Sci. 2017;12(1):77.
Article
Google Scholar
Pitney WA, Parker J. Qualitative research in physical activity and the health professions. Champaign, IL: Human Kinetics; 2009. p. 219.
Google Scholar
Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.
Article
Google Scholar
Willig C, Rogers WS. The SAGE Handbook of Qualitative Research in Psychology. SAGE; 2017. 665 p.
Krakauer JW, Cortés JC. A non-task-oriented approach based on high-dose playful movement exploration for rehabilitation of the upper limb early after stroke: A proposal. NRE. 2018;43(1):31–40.
Article
Google Scholar
Levac D, Glegg SM, Sveistrup H, Colquhoun H, Miller PA, Finestone H, et al. A knowledge translation intervention to enhance clinical application of a virtual reality system in stroke rehabilitation. BMC Health Serv Res. 2016;16(1):557.
Article
Google Scholar
Pallesen H, Andersen MB, Hansen GM, Lundquist CB, Brunner I. Patients’ and Health Professionals’ Experiences of Using Virtual Reality Technology for Upper Limb Training after Stroke: A Qualitative Substudy. Rehabil Res Pract. 2018;2018:1–11.
Google Scholar
Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A’Court C, et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J Med Internet Res. 2017;19(11):e367.
Article
Google Scholar
Proffitt R, Glegg S, Levac D, Lange B. End-user involvement in rehabilitation virtual reality implementation research. Jet. 2019;13(2):92–100.
Article
Google Scholar
Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;2:Cd008349.
Google Scholar
Slater M, Sanchez-Vives MV. Enhancing Our Lives with Immersive Virtual Reality. Front Robot AI [Internet]. 2016 Dec 19 [cited 2022 Jan 27];3. Available from: http://journal.frontiersin.org/article/https://doi.org/10.3389/frobt.2016.00074/full
Valdés BA, Glegg SMN, Lambert-Shirzad N, Schneider AN, Marr J, Bernard R, et al. Application of commercial games for home-based rehabilitation for people with hemiparesis: challenges and lessons learned. Games Health J. 2018;7(3):197–207.
Article
Google Scholar